
EMENIVEOL; A NEW POLLEN GROWTH INHIBITOR FROM THE FUNGUS, EMERICELLA NIVEA

Yasuo Kimura*, Masahiko Nishibe, Hiromitsu Nakajima, and Takashi Hamasaki Faculty of Agriculture, Tottori University, Koyama, Tottori 680, Japan Norihiro Shigemitsu Daiwabo Create Co: Ltd, Komiya, Harima-cho, Hyougo 675-01, Japan Fumio Sugawara RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-01, Japan Thomas J. Stout and Jon Clardy* Baker Laboratory, Department of Chemistry, Cornell University, Ithaca, New York 14853-1301, U. S. A.

Summary Emeniveol (1), a new pollen growth inhibitor, was isolated from the fungus, Emericella nivea. The structure was elucidated from the X-ray crystallographic analysis as well as homonuclear decoupling, COSY, COLOC and HMBC experiments, and chemical reaction.

Pollen, the gametophyte of plants, is a physiologically important organ to cross-breed with a pistil. During the course of our screening program for new pollen growth regulators among the metabolites of fungi, an active compound named emeniveol (1) was isolated from the fungus, *Emericella nivea*.

The fungus was statically cultured in a malt extract medium at 24 °C for 21 days. The mycelial mats obtained after filtration were extracted with acetone. After evaporating the solvent, the acetone soluble fraction was subjected to a silica gel (bezene-acetone) column and subsequently purified on a Sephadex LH-20 (methanol) column chromatography. The active principle 1 thus obtained was recrystallized from methanol to afford pure needles in a yield of 7 mg per liter of the culture broth.

Emeniveol (1) was the following physicochemical properties: colorless needles (from MeOH); mp 179 °C; $[\alpha]_D^{20}$ -91 °(c 1.0, MeOH); C₂₈H₃₉NO (M⁺ obsd., *m/z* 405.3034, calcd., 405.3030); Anal. found, C: 82.59, H:9.72, N: 3.47 %, calcd., C: 82.91, H: 9.69, N 3.45 %. A positive coloration with the Ehrlich reagent (green red) and the strong fragmentation at *m/z* 130 in the El-MS together with the ¹³C chemical shifts (C-2, 121.93; C-3, 115.40; C-3a, 127.89; C-4, 118.92; C-5, 119.08; C-6, 121.76; C-7, 111.04; C-7a, 113.15) suggested the presence of an indole-3-yl methyl group (A) in 1.

On hydrogenation of 1 by PtO₂, tetrahydroemeniveol¹ reduced of two double bonds was obtained. One of the double bonds was exomethylene (C-14, C-26) and the other was isohexenyl one (C-21, C-22).

Acetylation with Ac₂O-pyridine afforded a monoacetyl derivative². Since the signal at δ_H 7.98 due to N<u>H</u> was remained in the ¹H-NMR spectrum, the presence of a hydroxyl group was indicated.

¹H-NMR and ¹³C-NMR spectra indicated the presence of partial structure of F and G, further decoupling experiments, COSY and HMBC spectra together with chemical reactions accounted for the presence of the partial structures of B-G.

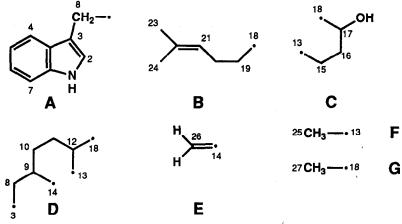


Fig. 1. Partial structures of emeniveol (1)

Considering the connections of the partial structures A-F just mentioned, and combining with the unsaturation degrees (ten units) from the molecular formula, Emeniveol (1) must have had a bicyclic skeleton except for indole moiety. In order to clarify the whole structure, an X-ray crystallographic analysis was carried out. Emeniveol (1) crystallized in the orthorhombic space group P2₁2₁2₁ with lattice constants, determined from a least-squares fit of diffractometer

measured 20-values, of a=6.612 (1), b=31.689 (2), c=11.433 (2) Å and one molecule of composition C₂₈H₃₉NO in the asymmetric unit. All diffraction maxima with 20≤45° were collected using MoK α radiation and variable speed ω -scans. Of the 1845 reflections collected in this fashion, 1543 (84 %) were judged observed (|Fo|≥4 σ (|Fo|) after correction for Lorentz, polarization, and background effects. A phasing model was found routinely using the SHELXTL implementation of direct methods, and the structure was refined using full-matrix least squares refinements with anisotropic nonhydrogen atoms and fixed isotropic hydrogens. The final discrepancy index was 0.056 for the observed reflections³.

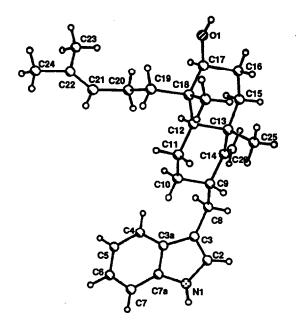


Fig. 2. A computer generated perspective drawing of the final x-ray model of emeniveol. No absolute stereochemistry is implied.

A computer generated perspective drawing of the final X-ray model is given in Figure 2. The indole fragment is planar within experimental error, and the decalin fragment has a chair chair conformation. The indolyl, isohexenyl and hydroxyl substituents are equatorial, and both methyls (C-25, C-27) are axial.

Although the chemical shifts at δ_C 162.97 in 1 due to C-14 was rather lower than that of other exomethylene resonance, the irradiations at C-9H, C-10H and C-25H in the COLOC spectra confirmed the assignment by appearing cross peaks.

Indole diterpenes, emindoles DA^{4,5}, DB⁵, and SA^{4,6}, aflavinine derivatives⁷, and nomine⁸, have been previously isolated from the fungi as biologically active substances.

Compound 1 at concentration of 100 mg/L inhibited pine pollen germination and tea pollen growth by about 35.5 % over the control.

Carbon δ _C number		δΗ	Carbon δ _C number		δμ
2	121.93 d	6.93 (1H, d, 1.95)	15	35.70 t	1.65 (2H, m)
3	115.40 s		16	27.72ª t	1.60 (1H, m) 1.77 (1H, m)
3a	127.89 s		17	73.36 d	3.52 (1H, dd, 4.98, 5.12)
4	118.92 d	7.56 (1H, dd, 8.05, 1.22)	18	41.52 s	
5	119.08 d	7.10 (1H, ddd, 8.05, 7.81, 0.98)	19	37.24 t	1.22 (1H, m) 1.45 (1H, m)
6	121.76 d	7.18 (1H, ddd, 8.05, 7.81, 1.22)	20	21.24 ^a t	1.80 (2H, m)
7	111.04 d	7.33 (1H, dd, 8.05, 0.98)	21	124.72 d	5.04 (1H, dd, 6.34, 1.46)
7a	136.15 s		22	131.15 s	
8	28.87 t	2.56 (1H, m)	23	17.61 q	1.57 (3H, br. s)
		3.11 (1H, dd, 13.78, 8.00)	24	25.66 q	1.65 (3H, br.s)
9	38.94 d	2.58 (1H, m)	25	21.22 q	1.10 (3H, s)
10	34.59 t	0.91 (1H, m), 1.77 (1H, m)	26	100.60 t	4.73 (1H, br. s)
11	21.65 ^a t	1.48 (2H, m)			4.75 (1H, br. s)
12	47.93 d	1.12 (1H, m)	27	16.73 q	0.78 (3H, s)
13	40.10 s			N <u>H</u>	7.98 (br. s)
14	162.97 s				

Table 1. ¹H and ¹³C-NMR assignments of Emeniveol.

Chemical shifts are expressed as δ ppm from TMS in CDCl₃.

Coupling constants are shown by Hz in parenthesis.

a: may be exchanged.

Acknowledgements

JC acknowledges the NIH (Grant CA24487) for financial support.

References and Notes

- 1. EIMS: m/z 409; Although the exact chemical shifts could not be assigned, the observed signals for C-26 at δ_C 100.60 ppm, C-14 at 162.97, C-21 at 124.72 and C-22 at 131.15 were moved to higher field.
- 2. EIMS: *m/z* 447; CH₃COO-, δ_H 2.02 (3H, s), δ_C 21.65 (q), δ_C 170.50 (s)
- Archival crystallographic data have been deposited with the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lens field Road, Cambridge CB2 1EW, UK. Please give a complete literature citation when ordering.
- 4. K. Nozawa, S. Udagawa, S. Nakajima and K. Kawai, J. Chem. Soc. Chem. Commun., 1987, 1157.
- 5. K. Nozawa, S. Nakajima, K. Kawai and S. Udagawa, J. Chem. Soc. Perkin Trans. 1, 1988, 1689.
- 6. K. Nozawa, M. Yuyama, S. Nakajima, K. Kawai and S. Udagawa, J. Chem. Soc. Perkin Trans. 1, 1988, 2155.
- 7. J. B. Gloer, M. R. TePaske, J. Sima, D. T. Wicklow and P. F. Dowd, *J. Org. Chem.*, **53**, 5457 (1988).
- 8. J. B. Gloer, B. L. Rinderknecht, D. T. Wicklow and P. F. Dowd, J. Org. Chem., 54, 2530 (1989).

(Received in Japan 25 June 1992)